255 research outputs found

    Entanglement in continuous variable systems: Recent advances and current perspectives

    Get PDF
    We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures, and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillability of Gaussian states and discuss the main properties of bipartite entanglement. These include the extremal entanglement, minimal and maximal, of two-mode mixed Gaussian states, the ordering of two-mode Gaussian states according to different measures of entanglement, the unitary (reversible) localization, and the scaling of bipartite entanglement in multimode Gaussian states. We then discuss recent advances in the understanding of entanglement sharing in multimode Gaussian states, including the proof of the monogamy inequality of distributed entanglement for all Gaussian states, and its consequences for the characterization of multipartite entanglement. We finally review recent advances and discuss possible perspectives on the qualification and quantification of entanglement in non Gaussian states, a field of research that is to a large extent yet to be explored.Comment: 61 pages, 7 figures, 3 tables; Published as Topical Review in J. Phys. A, Special Issue on Quantum Information, Communication, Computation and Cryptography (v3: few typos corrected

    Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators

    Get PDF
    We characterize the validity of the Maximum Principle in bounded domains for fully nonlinear degenerate elliptic operators in terms of the sign of a suitably defined generalized principal eigenvalue. Here, the maximum principle refers to the property of non-positivity of viscosity subsolutions of the Dirichlet problem. The new notion of generalized principal eigenvalue that we introduce here allows us to deal with arbitrary type of degeneracy of the elliptic operators. We further discuss the relations between this notion and other natural generalizations of the classical notion of principal eigenvalue, some of which have been previously introduced for particular classes of operators

    Measurement of Cosmic Ray spectrum and Anisotropy with ARGO-YBJ

    Get PDF
    In this paper we report on the observation of the anisotropy of cosmic ray arrival direction at different angular scales with ARGO-YBJ. Evidence of new few-degree excesses throughout the sky region 195∘≤^{\circ}\leq R.A. ≤\leq 315∘^{\circ} is presented for the first time. We report also on the measurement of the light-component (p+He) spectrum of primary cosmic rays in the range 5 - 200 TeV.Comment: Invited talk to the 3rd Galileo - Xu Guangqi meeting, October 11-15, 2011 Beijing (China
    • …
    corecore